{ es:EO. as,bs:E List.
    (loc-ordered(es;as)
     loc-ordered(es;bs)
     (as = bs  e:E. ((e  as)  (e  bs)))) }

{ Proof }



Definitions occuring in Statement :  loc-ordered: loc-ordered(es;L) es-E: E event_ordering: EO all: x:A. B[x] iff: P  Q implies: P  Q list: type List equal: s = t l_member: (x  l)
Definitions :  all: x:A. B[x] implies: P  Q member: t  T so_lambda: x y.t[x; y] not: A loc-ordered: loc-ordered(es;L) so_apply: x[s1;s2] and: P  Q trans: Trans(T;x,y.E[x; y]) false: False prop:
Lemmas :  l-ordered-equality es-E_wf es-locl_wf es-locl-antireflexive event_ordering_wf pes-axioms

\mforall{}es:EO.  \mforall{}as,bs:E  List.
    (loc-ordered(es;as)  {}\mRightarrow{}  loc-ordered(es;bs)  {}\mRightarrow{}  (as  =  bs  \mLeftarrow{}{}\mRightarrow{}  \mforall{}e:E.  ((e  \mmember{}  as)  \mLeftarrow{}{}\mRightarrow{}  (e  \mmember{}  bs))))


Date html generated: 2011_08_16-AM-10_26_52
Last ObjectModification: 2010_09_24-PM-09_14_49

Home Index