{ [ds,ds':ltg:Id fp-Type].  State(ds') r State(ds) supposing ds  ds' }

{ Proof }



Definitions occuring in Statement :  ma-state: State(ds) fpf-sub: f  g fpf: a:A fp-B[a] id-deq: IdDeq Id: Id subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] universe: Type
Definitions :  apply: f a so_apply: x[s] void: Void fpf-single: x : v fpf-join: f  g atom: Atom$n tag-by: zT rev_implies: P  Q or: P  Q iff: P  Q record+: record+ record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B union: left + right deq: EqDecider(T) fpf-ap: f(x) top: Top pair: <a, b> list: type List true: True squash: T set: {x:A| B[x]}  cand: A c B implies: P  Q fpf-cap: f(x)?z strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b product: x:A  B[x] ma-state: State(ds) subtype_rel: A r B id-deq: IdDeq prop: fpf-sub: f  g uimplies: b supposing a fpf: a:A fp-B[a] uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x.t[x] lambda: x.A[x] universe: Type Id: Id all: x:A. B[x] function: x:A  B[x] member: t  T equal: s = t MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  top_wf Id_wf subtype_rel_dep_function fpf-cap_wf ma-state_wf fpf_wf true_wf squash_wf subtype_rel_wf id-deq_wf fpf-sub_wf subtype_rel_self deq_wf subtype-fpf-cap-top

\mforall{}[ds,ds':ltg:Id  fp->  Type].    State(ds')  \msubseteq{}r  State(ds)  supposing  ds  \msubseteq{}  ds'


Date html generated: 2011_08_10-AM-08_12_17
Last ObjectModification: 2011_06_18-AM-08_27_22

Home Index