{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [f:A  ]. [X:EClass(A)]. [e:E].
    (v from X with maximum f[v])(e) ~ accum_list(v,e.if f[v] <z f[X(e)]
    then X(e)
    else v
    fi ;e.X(e);(X)(e)) 
    supposing e  (v from X with maximum f[v]) }

{ Proof }



Definitions occuring in Statement :  max-f-class: (v from X with maximum f[v]) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E lt_int: i <z j assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] int: universe: Type sqequal: s ~ t accum_list: accum_list(a,x.f[a; x];x.base[x];L)
Definitions :  max-f-class: (v from X with maximum f[v]) so_apply: x[s] top: Top member: t  T so_lambda: x.t[x] so_lambda: x y.t[x; y] prop: uall: [x:A]. B[x] uimplies: b supposing a so_apply: x[s1;s2] all: x:A. B[x] subtype: S  T
Lemmas :  accum-class-val assert_wf in-eclass_wf max-f-class_wf es-interface-subtype_rel top_wf es-E_wf event-ordering+_inc eclass_wf event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].
    (v  from  X  with  maximum  f[v])(e)  \msim{}  accum\_list(v,e.if  f[v]  <z  f[X(e)]
    then  X(e)
    else  v
    fi  ;e.X(e);\mleq{}(X)(e)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  (v  from  X  with  maximum  f[v])


Date html generated: 2011_08_16-PM-04_37_26
Last ObjectModification: 2011_06_20-AM-00_59_55

Home Index