{ [Info:Type]. [eo:EO+(Info)]. [e,e':E].
    e'  E supposing (loc(e') = loc(e))  e loc e'  }

{ Proof }



Definitions occuring in Statement :  eo-forward: eo.e event-ordering+: EO+(Info) es-le: e loc e'  es-loc: loc(e) es-E: E Id: Id uimplies: b supposing a uall: [x:A]. B[x] implies: P  Q member: t  T universe: Type equal: s = t
Definitions :  subtype: S  T limited-type: LimitedType fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) union: left + right or: P  Q assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) lambda: x.A[x] record-update: r[x := v] eo-restrict: eo-restrict(eo;P) record-select: r.x subtype_rel: A r B all: x:A. B[x] axiom: Ax eo-forward: eo.e prop: function: x:A  B[x] universe: Type uall: [x:A]. B[x] event-ordering+: EO+(Info) event_ordering: EO uimplies: b supposing a isect: x:A. B[x] member: t  T es-le: e loc e'  es-loc: loc(e) Id: Id equal: s = t implies: P  Q es-E: E set: {x:A| B[x]}  tactic: Error :tactic,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  eo-forward-E-subtype2 member_wf eo-forward_wf subtype_rel_wf Id_wf es-loc_wf es-le_wf es-E_wf event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[eo:EO+(Info)].  \mforall{}[e,e':E].    e'  \mmember{}  E  supposing  (loc(e')  =  loc(e))  {}\mRightarrow{}  e  \mleq{}loc  e' 


Date html generated: 2011_08_16-AM-11_22_42
Last ObjectModification: 2011_06_20-AM-00_25_50

Home Index