{ S:Id List. G:Graph(S). a:Id  Id  Id. b:Id. j:{j:Id| (j  S)} . k:Knd\000C
.
    ((k  graph-rcvs(S;G;a;b;j))
     i:Id. ((i  S)  (ij)G  (k = rcv((link(a i j) from i to j),b)))) }

{ Proof }



Definitions occuring in Statement :  graph-rcvs: graph-rcvs(S;G;a;b;j) id-graph-edge: (ij)G id-graph: Graph(S) rcv: rcv(l,tg) Knd: Knd mk_lnk: (link(n) from i to j) Id: Id all: x:A. B[x] exists: x:A. B[x] iff: P  Q and: P  Q set: {x:A| B[x]}  apply: f a function: x:A  B[x] list: type List equal: s = t l_member: (x  l)
Definitions :  all: x:A. B[x] id-graph: Graph(S) l_member: (x  l) Knd: Knd iff: P  Q exists: x:A. B[x] and: P  Q member: t  T prop: implies: P  Q l_all: (xL.P[x]) so_lambda: x.t[x] cand: A c B le: A  B not: A false: False subtype: S  T rev_implies: P  Q graph-rcvs: graph-rcvs(S;G;a;b;j) id-graph-edge: (ij)G so_apply: x[s] nat:
Lemmas :  list-set-type2 l_member_wf IdLnk_wf Id_wf mapfilter_wf property-from-l_member sq_stable_from_decidable decidable__l_member decidable__equal_Id deq-member_wf id-deq_wf strong-subtype-deq-subtype strong-subtype-set3 strong-subtype-self assert_wf rcv_wf mk_lnk_wf nat_wf length_wf1 select_wf l_member-settype l_member-set iff_functionality_wrt_iff member_map_filter assert-deq-member

\mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}a:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Id.  \mforall{}b:Id.  \mforall{}j:\{j:Id|  (j  \mmember{}  S)\}  .  \mforall{}k:Knd.
    ((k  \mmember{}  graph-rcvs(S;G;a;b;j))
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:Id.  ((i  \mmember{}  S)  \mwedge{}  (i{}\mrightarrow{}j)\mmember{}G  \mwedge{}  (k  =  rcv((link(a  i  j)  from  i  to  j),b))))


Date html generated: 2010_08_26-PM-11_41_22
Last ObjectModification: 2009_03_22-PM-01_24_22

Home Index