{ a,b:Id.  Dec(a = b) }

{ Proof }



Definitions occuring in Statement :  Id: Id decidable: Dec(P) all: x:A. B[x] equal: s = t
Definitions :  eq_id: a = b limited-type: LimitedType lambda: x.A[x] member: t  T rev_implies: P  Q uiff: uiff(P;Q) uimplies: b supposing a isect: x:A. B[x] uall: [x:A]. B[x] iff: P  Q and: P  Q implies: P  Q product: x:A  B[x] assert: b prop: universe: Type so_lambda: x.t[x] all: x:A. B[x] function: x:A  B[x] decidable: Dec(P) equal: s = t Id: Id Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_member: (x  l) l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_disjoint: l_disjoint(T;l1;l2) l_exists: (xL. P[x]) l_all: (xL.P[x]) apply: f a infix_ap: x f y fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) exists: x:A. B[x] i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s fset-closed: (s closed under fs) f-subset: xs  ys
Lemmas :  decidable__assert all_functionality_wrt_iff decidable_functionality iff_weakening_uiff uiff_inversion assert-eq-id decidable_wf assert_wf eq_id_wf Id_wf

\mforall{}a,b:Id.    Dec(a  =  b)


Date html generated: 2011_08_10-AM-07_47_53
Last ObjectModification: 2010_11_29-PM-11_50_42

Home Index