Nuprl Lemma : all_functionality_wrt_iff
∀[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀x:S. (P[x] 
⇐⇒ Q[x])) 
⇒ (∀x:S. P[x] 
⇐⇒ ∀y:T. Q[y]) supposing S = T ∈ Type
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
iff_wf, 
all_wf
Rules used in proof : 
hyp_replacement, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
equalitySymmetry, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
cumulativity, 
because_Cache, 
instantiate, 
universeEquality, 
functionEquality, 
isect_memberFormation, 
introduction, 
axiomEquality, 
rename, 
lambdaFormation, 
independent_pairFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}x:S.  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  (\mforall{}x:S.  P[x]  \mLeftarrow{}{}\mRightarrow{}  \mforall{}y:T.  Q[y])  supposing  S  =  T
Date html generated:
2016_05_13-PM-03_12_21
Last ObjectModification:
2016_01_06-PM-05_24_27
Theory : core_2
Home
Index