{ mlt_inning_val()     List    ( + (    ))
                      (?     + (  )) }

{ Proof }



Definitions occuring in Statement :  mlt_inning_val: mlt_inning_val() nat: unit: Unit member: t  T function: x:A  B[x] product: x:A  B[x] union: left + right list: type List int:
Definitions :  int: member: t  T equal: s = t nat: product: x:A  B[x] union: left + right list: type List unit: Unit pair: <a, b> universe: Type inr: inr x  inl: inl x  cons: [car / cdr] function: x:A  B[x] all: x:A. B[x] strict-majority-or-max: strict-majority-or-max(L) l_member: (x  l) prop: set: {x:A| B[x]}  eq_int: (i = j) bool: bnot: b lambda: x.A[x] so_lambda: x.t[x] bl-exists: (xL.P[x])_b ifthenelse: if b then t else f fi  le: A  B ge: i  j  le_int: i z j spread: spread def natural_number: $n less_than: a < b void: Void implies: P  Q false: False not: A p-outcome: Outcome subtype_rel: A r B strong-subtype: strong-subtype(A;B) rationals: subtype: S  T real: decide: case b of inl(x) =s[x] | inr(y) =t[y] spreadn: spread3 fpf: a:A fp-B[a] guard: {T} sq_type: SQType(T) sqequal: s ~ t true: True squash: T assert: b and: P  Q iff: P  Q rev_implies: P  Q apply: f a so_apply: x[s] or: P  Q pi2: snd(t) limited-type: LimitedType pi1: fst(t) bfalse: ff btrue: tt length: ||as|| isect: x:A. B[x] top: Top nil: [] add: n + m mlt_inning_val: mlt_inning_val()
Lemmas :  length_wf1 top_wf false_wf length_wf_nat non_neg_length btrue_wf bfalse_wf bool_wf decide_wf pi1_wf pi2_wf cons_one_one assert_wf guard_wf nat_sq int_sq member_wf le_wf le_int_wf nat_properties ifthenelse_wf bl-exists_wf bnot_wf eq_int_wf l_member_wf strict-majority-or-max_wf unit_wf nat_wf

mlt\_inning\_val()  \mmember{}  \mBbbN{}  \mtimes{}  \mBbbZ{}  List  \mtimes{}  \mBbbN{}  \mtimes{}  (\mBbbZ{}  +  (\mBbbN{}  \mtimes{}  \mBbbN{}  \mtimes{}  \mBbbZ{}))  {}\mrightarrow{}  (?\mBbbN{}  \mtimes{}  \mBbbN{}  \mtimes{}  \mBbbZ{}  +  (\mBbbN{}  \mtimes{}  \mBbbZ{}))


Date html generated: 2010_08_27-PM-08_31_01
Last ObjectModification: 2010_06_23-PM-11_58_58

Home Index