Nuprl Lemma : nat_sq

SQType(ℕ)


Proof




Definitions occuring in Statement :  nat: sq_type: SQType(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base
Rules used in proof :  cut instantiate lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality

Latex:
SQType(\mBbbN{})



Date html generated: 2016_05_13-PM-04_10_26
Last ObjectModification: 2015_12_26-AM-11_22_13

Theory : subtype_1


Home Index