Nuprl Lemma : nat_sq
SQType(ℕ)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
sq_type: SQType(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base
Rules used in proof : 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality
Latex:
SQType(\mBbbN{})
Date html generated:
2016_05_13-PM-04_10_26
Last ObjectModification:
2015_12_26-AM-11_22_13
Theory : subtype_1
Home
Index