{ norm-base-deriv()  id-fun(BaseDef) }

{ Proof }



Definitions occuring in Statement :  norm-base-deriv: norm-base-deriv() base-deriv: BaseDef member: t  T id-fun: id-fun(T)
Definitions :  id-fun: id-fun(T) eclass: EClass(A[eo; e]) equal: s = t member: t  T function: x:A  B[x] all: x:A. B[x] subtype_rel: A r B isect: x:A. B[x] fpf: a:A fp-B[a] universe: Type limited-type: LimitedType bool: product: x:A  B[x] lambda: x.A[x] strong-subtype: strong-subtype(A;B) list: type List name: Name set: {x:A| B[x]}  exists: x:A. B[x] intensional-universe: IType subtype: S  T implies: P  Q es-E-interface: E(X) pair: <a, b> l_member: (x  l) norm-pair: norm-pair(Na;Nb) apply: f a so_apply: x[s] value-type: value-type(T) Id: Id atom: Atom$n int: atom: Atom rec: rec(x.A[x]) quotient: x,y:A//B[x; y] tunion: x:A.B[x] b-union: A  B union: left + right tag-by: zT or: P  Q rev_implies: P  Q and: P  Q iff: P  Q ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record: record(x.T[x]) isect2: T1  T2 nat: limited-type-level: limited-type-level{i:l}(n;T) record+: record+ fset: FSet{T} top: Top true: True fpf-cap: f(x)?z assert: b guard: {T} so_lambda: x.t[x] not: A le: A  B sq_type: SQType(T) false: False prop: sq-id-fun: sq-id-fun(T) norm-list: norm-list(N) nil: [] norm-base-deriv: norm-base-deriv() base-deriv: BaseDef Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  Unfold: Error :Unfold
Lemmas :  name_wf norm-pair_wf norm-list_wf subtype_base_sq list-value-type product-value-type limited-type-level_wf nat_wf intensional-universe_wf value-type_wf atom2-value-type Id_wf member_wf bool_wf limited-type_wf id-fun_wf subtype_rel_wf

norm-base-deriv()  \mmember{}  id-fun(BaseDef)


Date html generated: 2011_08_17-PM-04_21_52
Last ObjectModification: 2011_06_18-AM-11_33_50

Home Index