{ [M:Type  Type]. [intr:pInTransit(P.M[P])].
    (norm-intransit(intr)  {intr':pInTransit(P.M[P])| intr' = intr} ) }

{ Proof }



Definitions occuring in Statement :  norm-intransit: norm-intransit(intr) pInTransit: pInTransit(P.M[P]) uall: [x:A]. B[x] so_apply: x[s] member: t  T set: {x:A| B[x]}  function: x:A  B[x] universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] pInTransit: pInTransit(P.M[P]) so_apply: x[s] member: t  T norm-intransit: norm-intransit(intr) spreadn: spread3 so_lambda: x.t[x] all: x:A. B[x] implies: P  Q and: P  Q pCom: pCom(P.M[P]) Com: Com(P.M[P]) tagged+: T |+ z:B tag-case: z:T has-value: has-value(a) subtype: S  T
Lemmas :  Id-has-value Id_wf pCom_wf rational-has-value int_inc tag-case_wf isect2_decomp isect2_wf Process_wf unit_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[intr:pInTransit(P.M[P])].
    (norm-intransit(intr)  \mmember{}  \{intr':pInTransit(P.M[P])|  intr'  =  intr\}  )


Date html generated: 2011_08_16-PM-06_51_15
Last ObjectModification: 2011_06_18-AM-11_05_50

Home Index