{ 
[M:Type 
 Type]. norm-system 
 id-fun(System(P.M[P])) supposing M[Top] }
{ Proof }
Definitions occuring in Statement : 
norm-system: norm-system, 
System: System(P.M[P]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
member: t 
 T, 
function: x:A 
 B[x], 
universe: Type, 
id-fun: id-fun(T)
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
so_apply: x[s], 
member: t 
 T, 
System: System(P.M[P]), 
norm-system: norm-system, 
all:
x:A. B[x], 
so_lambda: 
x.t[x], 
ldag: LabeledDAG(T), 
labeled-graph: LabeledGraph(T), 
or: P 
 Q, 
pInTransit: pInTransit(P.M[P]), 
id-fun: id-fun(T), 
implies: P 
 Q
Lemmas : 
norm-pair_wf, 
component_wf, 
ldag_wf, 
pInTransit_wf, 
norm-components_wf, 
top_wf, 
list-value-type, 
set-value-type, 
labeled-graph_wf, 
is-dag_wf, 
Error :dep-isect-value-type, 
int_seg_wf, 
length_wf1, 
value-type_wf, 
id-fun-set, 
norm-lg_wf, 
product-value-type, 
Id_wf, 
pCom_wf
\mforall{}[M:Type  {}\mrightarrow{}  Type].  norm-system  \mmember{}  id-fun(System(P.M[P]))  supposing  M[Top]
Date html generated:
2011_08_16-PM-06_52_33
Last ObjectModification:
2011_06_18-AM-11_07_00
Home
Index