Nuprl Lemma : norm-lg_wf

[T:Type]. [N:id-fun(T)]. (norm-lg(N)  id-fun(LabeledGraph(T))) supposing value-type(T)


Proof not projected




Definitions occuring in Statement :  norm-lg: norm-lg(N) labeled-graph: LabeledGraph(T) uimplies: b supposing a uall: [x:A]. B[x] member: t  T universe: Type id-fun: id-fun(T) value-type: value-type(T)
Definitions :  all: x:A. B[x] so_lambda: x.t[x] norm-lg: norm-lg(N) member: t  T id-fun: id-fun(T) uimplies: b supposing a uall: [x:A]. B[x] implies: P  Q prop: int_seg: {i..j} subtype: S  T top: Top labeled-graph: LabeledGraph(T) cand: A c B and: P  Q spreadn: spread3 lelt: i  j < k l_all: (xL.P[x]) pi1: fst(t) pi2: snd(t) le: A  B not: A false: False squash: T true: True so_apply: x[s] nat: l_member: (x  l) exists: x:A. B[x] sq_type: SQType(T) guard: {T} lg-size: lg-size(g)
Lemmas :  value-type_wf id-fun_wf int-value-type list-value-type norm-pair_wf product-value-type norm-list_wf labeled-graph_wf equal_wf subtype_rel_set_simple subtype_rel_self subtype_rel_simple_product subtype_rel_list lelt_wf nat_wf lg-size_wf int_seg_wf top_wf le_wf l_member_wf l_all_wf2 list-set-type2 less_than_wf and_wf subtype_base_sq list_subtype_base int_subtype_base pi2_wf pi1_wf_top select_wf length_wf length_wf_nat

\mforall{}[T:Type].  \mforall{}[N:id-fun(T)].  (norm-lg(N)  \mmember{}  id-fun(LabeledGraph(T)))  supposing  value-type(T)


Date html generated: 2012_01_23-PM-12_41_30
Last ObjectModification: 2011_12_20-PM-12_32_11

Home Index