Nuprl Lemma : subtype_rel_set_simple

[A:Type]. ∀[P:A ⟶ ℙ].  ({a:A| P[a]}  ⊆A)


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_apply: x[s] prop:
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality setElimination thin rename hypothesisEquality setEquality applyEquality hypothesis sqequalHypSubstitution sqequalRule universeEquality axiomEquality functionEquality cumulativity isect_memberEquality isectElimination because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    (\{a:A|  P[a]\}    \msubseteq{}r  A)



Date html generated: 2016_05_13-PM-03_18_45
Last ObjectModification: 2015_12_26-AM-09_08_14

Theory : subtype_0


Home Index