{ [T,Info:Type]. [X,Y:EClass(T)].  (X || Y  EClass(T)) }

{ Proof }



Definitions occuring in Statement :  parallel-class: X || Y eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T universe: Type
Definitions :  bag-append: as + bs bag: bag(T) eclass-compose2: eclass-compose2(f;X;Y) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] so_lambda: x y.t[x; y] isect: x:A. B[x] axiom: Ax parallel-class: X || Y eclass: EClass(A[eo; e]) universe: Type member: t  T equal: s = t
Lemmas :  eclass_wf es-E_wf event-ordering+_inc event-ordering+_wf eclass-compose2_wf bag-append_wf bag_wf

\mforall{}[T,Info:Type].  \mforall{}[X,Y:EClass(T)].    (X  ||  Y  \mmember{}  EClass(T))


Date html generated: 2011_08_16-AM-11_36_51
Last ObjectModification: 2011_06_20-AM-00_29_45

Home Index