{ 
[A:
']. 
[dfp:DataflowProgram(A)]. 
[B:Type].
  
[G:bag(df-program-type(dfp)) 
 bag(B)].
    better-parallel-dataflow(
    1;
k.[df-program-meaning(dfp)][k];
    
g.G[g 0])
    = df-program-meaning(parallel-df-prog1(B;G;dfp)) 
    supposing (G[{}] = {}) 
 valueall-type(B) }
{ Proof }
Definitions occuring in Statement : 
parallel-df-prog1: parallel-df-prog1(B;G;dfp), 
df-program-meaning: df-program-meaning(dfp), 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
better-parallel-dataflow: better-parallel-dataflow, 
dataflow: dataflow(A;B), 
select: l[i], 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
and: P 
 Q, 
apply: f a, 
lambda:
x.A[x], 
function: x:A 
 B[x], 
cons: [car / cdr], 
nil: [], 
natural_number: $n, 
universe: Type, 
equal: s = t, 
empty-bag: {}, 
bag: bag(T), 
valueall-type: valueall-type(T)
Definitions : 
so_lambda: 
x y.t[x; y], 
limited-type: LimitedType, 
prop:
, 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
less_than: a < b, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
spread: spread def, 
evalall: evalall(t), 
rec-dataflow: rec-dataflow(s0;s,m.next[s; m]), 
set: {x:A| B[x]} , 
all:
x:A. B[x], 
axiom: Ax, 
parallel-df-prog1: parallel-df-prog1(B;G;dfp), 
so_apply: x[s], 
nil: [], 
df-program-meaning: df-program-meaning(dfp), 
cons: [car / cdr], 
select: l[i], 
natural_number: $n, 
better-parallel-dataflow: better-parallel-dataflow, 
member: t 
 T, 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
isect:
x:A. B[x], 
dataflow: dataflow(A;B), 
and: P 
 Q, 
product: x:A 
 B[x], 
valueall-type: valueall-type(T), 
equal: s = t, 
function: x:A 
 B[x], 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
universe: Type, 
inl: inl x , 
empty-bag: {}, 
pair: <a, b>, 
apply: f a, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
lambda:
x.A[x], 
so_lambda: 
x.t[x], 
unit: Unit, 
union: left + right, 
bag: bag(T), 
parameter: parm{i}, 
inr: inr x , 
atom: Atom$n, 
int:
, 
atom: Atom, 
rec: rec(x.A[x]), 
quotient: x,y:A//B[x; y], 
tunion:
x:A.B[x], 
b-union: A 
 B, 
list: type List, 
assert:
b, 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
bag-member: bag-member(T;x;bs), 
req: x = y, 
rnonneg: rnonneg(r), 
rleq: x 
 y, 
i-member: r 
 I, 
partitions: partitions(I;p), 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
fpf-sub: f 
 g, 
implies: P 
 Q, 
sq_stable: SqStable(P), 
bool:
, 
sqequal: s ~ t, 
squash:
T, 
true: True, 
MaAuto: Error :MaAuto, 
CollapseTHEN: Error :CollapseTHEN, 
RepUR: Error :RepUR, 
Auto: Error :Auto, 
Try: Error :Try
Lemmas : 
rec-dataflow_wf, 
squash_wf, 
true_wf, 
evalall_wf, 
evalall-reduce, 
product-valueall-type, 
union-valueall-type, 
equal-valueall-type, 
bag-valueall-type, 
sq_stable__valueall-type, 
parallel-1-equiv, 
bag_wf, 
valueall-type_wf, 
empty-bag_wf, 
dataflow_wf, 
dataflow-program_wf, 
df-program-type_wf, 
uall_wf, 
unit_wf
\mforall{}[A:\mBbbU{}'].  \mforall{}[dfp:DataflowProgram(A)].  \mforall{}[B:Type].  \mforall{}[G:bag(df-program-type(dfp))  {}\mrightarrow{}  bag(B)].
    better-parallel-dataflow(
    1;\mlambda{}k.[df-program-meaning(dfp)][k];
    \mlambda{}g.G[g  0])
    =  df-program-meaning(parallel-df-prog1(B;G;dfp)) 
    supposing  (G[\{\}]  =  \{\})  \mwedge{}  valueall-type(B)
Date html generated:
2011_08_16-AM-09_42_17
Last ObjectModification:
2011_06_18-AM-08_33_21
Home
Index