{ pi-null-trans()  pi-process() }

{ Proof }



Definitions occuring in Statement :  pi-null-trans: pi-null-trans() pi-process: pi-process() member: t  T
Definitions :  universe: Type member: t  T equal: s = t function: x:A  B[x] all: x:A. B[x] pi-process: pi-process() set: {x:A| B[x]}  subtype_rel: A r B unit: Unit piM: piM(T) Id: Id so_lambda: x.t[x] Com: Com(P.M[P]) apply: f a product: x:A  B[x] list: type List nil: [] lambda: x.A[x] make-lg: make-lg(L) it: pair: <a, b> so_lambda: x y.t[x; y] rec-process: RecProcess(s0;s,m.next[s; m]) pi-null-trans: pi-null-trans()
Lemmas :  rec-process_wf_pi_simple_state it_wf make-lg_wf Com_wf Id_wf piM_wf unit_wf subtype_rel_wf pi-process_wf

pi-null-trans()  \mmember{}  pi-process()


Date html generated: 2010_08_27-PM-09_43_23
Last ObjectModification: 2010_04_29-PM-12_54_17

Home Index