{ [S:Type]. [s0:S]. [next:T:{T:Type| pi-process() r T} 
                               (S
                                piM(T)
                                (S  LabeledDAG(Id  (Com(T.piM(T)) T))))].
    (RecProcess(s0;s,m.next[s;m])  pi-process()) }

{ Proof }



Definitions occuring in Statement :  pi-process: pi-process() piM: piM(T) Com: Com(P.M[P]) ldag: LabeledDAG(T) rec-process: RecProcess(s0;s,m.next[s; m]) Id: Id subtype_rel: A r B uall: [x:A]. B[x] so_apply: x[s1;s2] member: t  T set: {x:A| B[x]}  apply: f a isect: x:A. B[x] function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  so_apply: x[s] implies: P  Q or: P  Q guard: {T} l_member: (x  l) assert: b subtype: S  T es-E-interface: E(X) PiDataVal: PiDataVal() tag-case: z:T isect2: T1  T2 list: type List union: left + right labeled-graph: LabeledGraph(T) type-continuous: Continuous(T.F[T]) pair: <a, b> nat: ext-eq: A  B strong-type-continuous: Continuous+(T.F[T]) eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) process: process(P.M[P];P.E[P]) Process: Process(P.M[P]) lvprocess: lvprocess(lp.M[lp];n) lambda: x.A[x] so_lambda: x y.t[x; y] uimplies: b supposing a all: x:A. B[x] axiom: Ax uall: [x:A]. B[x] function: x:A  B[x] ldag: LabeledDAG(T) product: x:A  B[x] Com: Com(P.M[P]) Id: Id piM: piM(T) set: {x:A| B[x]}  subtype_rel: A r B universe: Type isect: x:A. B[x] member: t  T equal: s = t pi-process: pi-process() rec-process: RecProcess(s0;s,m.next[s; m]) so_apply: x[s1;s2] apply: f a MaAuto: Error :MaAuto,  so_lambda: x.t[x] CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto
Lemmas :  pi-process_wf continuous-constant nat_wf ext-eq_wf uall_wf strong-type-continuous_wf rec-process_wf_pi piM_wf Com_wf Id_wf ldag_wf subtype_rel_wf member_wf

\mforall{}[S:Type].  \mforall{}[s0:S].  \mforall{}[next:\mcap{}T:\{T:Type|  pi-process()  \msubseteq{}r  T\} 
                                                          (S  {}\mrightarrow{}  piM(T)  {}\mrightarrow{}  (S  \mtimes{}  LabeledDAG(Id  \mtimes{}  (Com(T.piM(T))  T))))].
    (RecProcess(s0;s,m.next[s;m])  \mmember{}  pi-process())


Date html generated: 2011_08_17-PM-06_58_11
Last ObjectModification: 2011_06_18-PM-12_36_55

Home Index