{ [M:Type  Type]
    [n,m:].
      process-input'(lp.M[lp];m) r process-input'(lp.M[lp];n) supposing m  n 
    supposing A,B:Type.  ((A r B)  (M[A] r M[B])) }

{ Proof }



Definitions occuring in Statement :  process-input': process-input'(lp.M[lp];n) subtype_rel: A r B nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] le: A  B all: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] implies: P  Q so_apply: x[s] process-input': process-input'(lp.M[lp];n) member: t  T int_seg: {i..j} so_lambda: x.t[x] lelt: i  j < k and: P  Q nat: prop:
Lemmas :  subtype_rel_product int_seg_wf le_wf nat_properties subtype_rel_self nat_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[n,m:\mBbbN{}].    process-input'(lp.M[lp];m)  \msubseteq{}r  process-input'(lp.M[lp];n)  supposing  m  \mleq{}  n 
    supposing  \mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (M[A]  \msubseteq{}r  M[B]))


Date html generated: 2011_08_17-PM-06_36_52
Last ObjectModification: 2011_06_18-PM-12_00_22

Home Index