{ 
[P:Pi_term]
    pi-rank(P) = ((pi-rank(pipar-left(P)) + pi-rank(pipar-right(P))) + 1) 
    supposing 
pipar?(P) }
{ Proof }
Definitions occuring in Statement : 
pi-rank: pi-rank(p), 
pipar-right: pipar-right(x), 
pipar-left: pipar-left(x), 
pipar?: pipar?(x), 
pi_term: Pi_term, 
assert:
b, 
nat:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
add: n + m, 
natural_number: $n, 
equal: s = t
Definitions : 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
member: t 
 T, 
prop:
, 
and: P 
 Q
Lemmas : 
assert_wf, 
pipar?_wf, 
pi_term_wf, 
pi-par-decompose, 
rank-par, 
pipar-left_wf, 
pipar-right_wf, 
pi-rank_wf, 
nat_wf
\mforall{}[P:Pi\_term]
    pi-rank(P)  =  ((pi-rank(pipar-left(P))  +  pi-rank(pipar-right(P)))  +  1)  supposing  \muparrow{}pipar?(P)
Date html generated:
2011_08_17-PM-06_47_43
Last ObjectModification:
2011_06_18-PM-12_19_34
Home
Index