{ pi-rank(0) = 0 }

{ Proof }



Definitions occuring in Statement :  pi-rank: pi-rank(p) pizero: 0 nat: natural_number: $n equal: s = t
Definitions :  p-outcome: Outcome universe: Type strong-subtype: strong-subtype(A;B) ge: i  j  uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] prop: less_than: a < b void: Void implies: P  Q false: False not: A pi-rank: pi-rank(p) pi_term_ind_pizero: pi_term_ind_pizero_compseq_tag_def natural_number: $n real: subtype: S  T rationals: all: x:A. B[x] function: x:A  B[x] equal: s = t member: t  T int: nat: set: {x:A| B[x]}  le: A  B Auto: Error :Auto,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic
Lemmas :  member_wf not_wf false_wf nat_wf le_wf

pi-rank(0)  =  0


Date html generated: 2011_08_17-PM-06_46_50
Last ObjectModification: 2011_06_18-PM-12_17_58

Home Index