{ [V:Type]. [A:Id List]. [L:consensus-rcv(V;A) List]. [i,n:].
    (filter(r.i <z inning(r);L) ~ []) supposing 
       ((n  i) and 
       (filter(r.n <z inning(r);L) = [])) }

{ Proof }



Definitions occuring in Statement :  rcvd-inning-gt: i <z inning(r) consensus-rcv: consensus-rcv(V;A) Id: Id uimplies: b supposing a uall: [x:A]. B[x] le: A  B lambda: x.A[x] nil: [] list: type List int: universe: Type sqequal: s ~ t equal: s = t filter: filter(P;l)
Definitions :  l_all: (xL.P[x]) not: A so_apply: x[s] member: t  T all: x:A. B[x] implies: P  Q false: False prop: and: P  Q rcvd-inning-gt: i <z inning(r) assert: b band: p  q rcv-vote?: rcv-vote?(x) spreadn: spread3 rcvd-vote: rcvd-vote(x) bfalse: ff btrue: tt outr: outr(x) ifthenelse: if b then t else f fi  top: Top subtype: S  T uall: [x:A]. B[x] uimplies: b supposing a iff: P  Q rev_implies: P  Q consensus-rcv: consensus-rcv(V;A) le: A  B nat: guard: {T}
Lemmas :  filter_is_nil rcvd-inning-gt_wf assert_wf l_member_wf le_wf consensus-rcv_wf filter_wf Id_wf member_filter false_wf lt_int_wf implies_functionality_wrt_iff iff_weakening_uiff assert_of_lt_int length_wf_nat filter_wf_top nat_wf top_wf member_wf nil_member

\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[L:consensus-rcv(V;A)  List].  \mforall{}[i,n:\mBbbZ{}].
    (filter(\mlambda{}r.i  <z  inning(r);L)  \msim{}  [])  supposing  ((n  \mleq{}  i)  and  (filter(\mlambda{}r.n  <z  inning(r);L)  =  []))


Date html generated: 2011_08_16-AM-10_11_34
Last ObjectModification: 2011_06_18-AM-09_04_15

Home Index