{ 
[S,M,E:Type 
 Type].
    (
[s0:S[process(P.M[P];P.E[P])]]. 
[next:
T:{T:Type| 
                                                 process(P.M[P];P.E[P]) 
r T} 
                                               (S[M[T] 
 (T 
 E[T])]
                                               
 M[T]
                                               
 (S[T] 
 E[T]))].
       (RecProcess(s0;s,m.next[s;m]) 
 process(P.M[P];P.E[P]))) supposing 
       (Continuous+(T.E[T]) and 
       Continuous+(T.M[T]) and 
       Continuous+(T.S[T])) }
{ Proof }
Definitions occuring in Statement : 
rec-process: RecProcess(s0;s,m.next[s; m]), 
process: process(P.M[P];P.E[P]), 
strong-type-continuous: Continuous+(T.F[T]), 
subtype_rel: A 
r B, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t 
 T, 
set: {x:A| B[x]} , 
isect:
x:A. B[x], 
function: x:A 
 B[x], 
product: x:A 
 B[x], 
universe: Type
Definitions : 
and: P 
 Q, 
ext-eq: A 
 B, 
bool:
, 
corec: corec(T.F[T]), 
let: let, 
rec-dataflow: rec-dataflow(s0;s,m.next[s; m]), 
implies: P 
 Q, 
axiom: Ax, 
so_apply: x[s1;s2], 
rec-process: RecProcess(s0;s,m.next[s; m]), 
subtype_rel: A 
r B, 
set: {x:A| B[x]} , 
product: x:A 
 B[x], 
process: process(P.M[P];P.E[P]), 
apply: f a, 
so_apply: x[s], 
lambda:
x.A[x], 
universe: Type, 
uimplies: b supposing a, 
prop:
, 
equal: s = t, 
so_lambda: 
x.t[x], 
strong-type-continuous: Continuous+(T.F[T]), 
all:
x:A. B[x], 
function: x:A 
 B[x], 
uall:
[x:A]. B[x], 
isect:
x:A. B[x], 
member: t 
 T, 
RepUR: Error :RepUR, 
CollapseTHEN: Error :CollapseTHEN, 
MaAuto: Error :MaAuto, 
CollapseTHENA: Error :CollapseTHENA, 
RepeatFor: Error :RepeatFor, 
Unfold: Error :Unfold, 
Repeat: Error :Repeat
Lemmas : 
process_wf, 
member_wf, 
strong-type-continuous_wf, 
subtype_rel_wf, 
rec-dataflow_wf2
\mforall{}[S,M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[s0:S[process(P.M[P];P.E[P])]].  \mforall{}[next:\mcap{}T:\{T:Type|  process(P.M[P];P.E[P])  \msubseteq{}r  T\} 
                                                                                          (S[M[T]  {}\mrightarrow{}  (T  \mtimes{}  E[T])]  {}\mrightarrow{}  M[T]  {}\mrightarrow{}  (S[T]  \mtimes{}  E[T]))].
          (RecProcess(s0;s,m.next[s;m])  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T])  and 
          Continuous+(T.S[T]))
Date html generated:
2011_08_16-AM-09_53_43
Last ObjectModification:
2011_06_18-AM-08_35_55
Home
Index