{ [M:Type  Type]. [r:pRunType(P.M[P])]. [e:runEvents(r)].
    (run-event-history(r;e)  runEvents(r) List) }

{ Proof }



Definitions occuring in Statement :  run-event-history: run-event-history(r;e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) uall: [x:A]. B[x] so_apply: x[s] member: t  T function: x:A  B[x] list: type List universe: Type
Definitions :  void: Void pi2: snd(t) pi1: fst(t) true: True guard: {T} btrue: tt sq_type: SQType(T) false: False not: A spread: spread def l_member: (x  l) rationals: real: grp_car: |g| cand: A c B atom: Atom$n natural_number: $n implies: P  Q filter: filter(P;l) fpf: a:A fp-B[a] subtype: S  T uimplies: b supposing a subtype_rel: A r B eclass: EClass(A[eo; e]) nat: decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  prop: int: le: A  B less_than: a < b and: P  Q Id: Id run-event-loc: run-event-loc(e) pMsg: pMsg(P.M[P]) mapfilter: mapfilter(f;P;L) from-upto: [n, m) run-event-step: run-event-step(e) is-run-event: is-run-event(r;t;x) pair: <a, b> let: let set: {x:A| B[x]}  assert: b bool: lambda: x.A[x] all: x:A. B[x] ldag: LabeledDAG(T) top: Top union: left + right product: x:A  B[x] apply: f a so_apply: x[s] universe: Type so_lambda: x.t[x] list: type List run-event-history: run-event-history(r;e) runEvents: runEvents(r) function: x:A  B[x] equal: s = t axiom: Ax member: t  T uall: [x:A]. B[x] isect: x:A. B[x] pRunType: pRunType(T.M[T]) tactic: Error :tactic
Lemmas :  le_wf is-run-event_wf nat_wf run-event-step_wf from-upto_wf mapfilter_wf runEvents_wf Id_wf run-event-loc_wf assert_wf list-subtype member_wf pRunType_wf bool_wf subtype_base_sq bool_subtype_base assert_elim pi1_wf_top pi2_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].  \mforall{}[e:runEvents(r)].
    (run-event-history(r;e)  \mmember{}  runEvents(r)  List)


Date html generated: 2011_08_16-PM-06_59_39
Last ObjectModification: 2011_06_18-AM-11_14_30

Home Index