{ [s:SES]. [A:Id].  (Honest(A)  (Ax  Honest(A))) }

{ Proof }



Definitions occuring in Statement :  ses-honest: Honest(A) security-event-structure: SES Id: Id uall: [x:A]. B[x] implies: P  Q member: t  T axiom: Ax
Definitions :  sdata: SecurityData event_ordering: EO es-E: E event-ordering+: EO+(Info) subtype: S  T fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) pi1: fst(t) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] prop: axiom: Ax ses-honest: Honest(A) lambda: x.A[x] security-event-structure: SES product: x:A  B[x] top: Top atom: Atom$n encryption-key: Key bool: eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type equal: s = t uall: [x:A]. B[x] Id: Id isect: x:A. B[x] member: t  T implies: P  Q function: x:A  B[x] Auto: Error :Auto,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  natural_number: $n int: false: False true: True unit: Unit union: left + right void: Void apply: f a pi2: snd(t) so_lambda: x.t[x]
Lemmas :  pi1_wf pi2_wf pi1_wf_top true_wf false_wf eclass_wf Id_wf bool_wf encryption-key_wf top_wf member_wf security-event-structure_wf ses-honest_wf event-ordering+_wf es-E_wf event-ordering+_inc sdata_wf

\mforall{}[s:SES].  \mforall{}[A:Id].    (Honest(A)  {}\mRightarrow{}  (Ax  \mmember{}  Honest(A)))


Date html generated: 2011_08_17-PM-07_15_40
Last ObjectModification: 2011_06_18-PM-01_03_46

Home Index