{ [Info,B:Type]. [n:]. [A:n  Type]. [Xs:k:n  EClass(A k)].
  [F:k:n  bag(A k)  bag(B)].
    (simple-comb(F;Xs)  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  simple-comb: simple-comb(F;Xs) eclass: EClass(A[eo; e]) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] natural_number: $n universe: Type bag: bag(T)
Definitions :  tactic: Error :tactic,  Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  uall: [x:A]. B[x] member: t  T isect: x:A. B[x] function: x:A  B[x] int_seg: {i..j} so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) universe: Type nat: equal: s = t bag: bag(T) apply: f a simple-comb: simple-comb(F;Xs) axiom: Ax natural_number: $n int: all: x:A. B[x] subtype: S  T grp_car: |g| real: set: {x:A| B[x]}  lambda: x.A[x] event-ordering+: EO+(Info) es-E: E event_ordering: EO le: A  B not: A false: False implies: P  Q subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b ge: i  j  strong-subtype: strong-subtype(A;B) fpf: a:A fp-B[a] lelt: i  j < k record+: record+ dep-isect: Error :dep-isect,  eq_atom: eq_atom$n(x;y) eq_atom: x =a y assert: b record-select: r.x
Lemmas :  subtype_rel_wf nat_wf int_seg_wf event-ordering+_inc eclass_wf member_wf es-E_wf event-ordering+_wf bag_wf

\mforall{}[Info,B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k)].  \mforall{}[F:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B)].
    (simple-comb(F;Xs)  \mmember{}  EClass(B))


Date html generated: 2011_08_16-AM-11_30_16
Last ObjectModification: 2011_06_20-AM-09_56_27

Home Index