{ SimpleType  ' }

{ Proof }



Definitions occuring in Statement :  simple_type: SimpleType member: t  T universe: Type
Definitions :  tag-by: zT ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) eclass: EClass(A[eo; e]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q uiff: uiff(P;Q) and: P  Q bag: bag(T) function: x:A  B[x] all: x:A. B[x] list: type List set: {x:A| B[x]}  top: Top true: True prop: subtype_rel: A r B uimplies: b supposing a isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] type-monotone: Monotone(T.F[T]) simple_type: SimpleType equal: s = t rec: rec(x.A[x]) atom: Atom universe: Type member: t  T union: left + right product: x:A  B[x]
Lemmas :  type-monotone_wf uall_wf subtype_rel_wf subtype_rel_simple_product subtype_rel_sum

SimpleType  \mmember{}  \mBbbU{}'


Date html generated: 2011_08_17-PM-04_39_29
Last ObjectModification: 2011_02_06-PM-03_59_50

Home Index