{ [st:SimpleType]. (st-kind(st)  ) }

{ Proof }



Definitions occuring in Statement :  st-kind: st-kind(st) simple_type: SimpleType uall: [x:A]. B[x] member: t  T int:
Definitions :  natural_number: $n universe: Type atom: Atom lambda: x.A[x] so_lambda: x.t[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: x y.t[x; y] int: axiom: Ax st-kind: st-kind(st) simple_type: SimpleType equal: s = t member: t  T simple_type_ind: simple_type_ind all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x]
Lemmas :  simple_type_ind_wf simple_type_wf

\mforall{}[st:SimpleType].  (st-kind(st)  \mmember{}  \mBbbZ{})


Date html generated: 2011_08_17-PM-04_58_56
Last ObjectModification: 2011_02_06-PM-10_03_15

Home Index