{ [U:Atom  SimpleType]
    L:(SimpleType  SimpleType) List. (st-unifies-all(U;L)  ) }

{ Proof }



Definitions occuring in Statement :  st-unifies-all: st-unifies-all(U;L) simple_type: SimpleType bool: uall: [x:A]. B[x] all: x:A. B[x] member: t  T function: x:A  B[x] product: x:A  B[x] list: type List atom: Atom
Definitions :  prop: pair: <a, b> st-unifies: st-unifies(U;st1;st2) spread: spread def l_member: (x  l) set: {x:A| B[x]}  so_lambda: x.t[x] bl-all: (xL.P[x])_b universe: Type bnot: b bfalse: ff btrue: tt uall: [x:A]. B[x] isect: x:A. B[x] atom: Atom lambda: x.A[x] bool: st-unifies-all: st-unifies-all(U;L) axiom: Ax all: x:A. B[x] function: x:A  B[x] list: type List product: x:A  B[x] simple_type: SimpleType equal: s = t member: t  T
Lemmas :  bl-all_wf st-unifies_wf l_member_wf simple_type_wf

\mforall{}[U:Atom  {}\mrightarrow{}  SimpleType].  \mforall{}L:(SimpleType  \mtimes{}  SimpleType)  List.  (st-unifies-all(U;L)  \mmember{}  \mBbbB{})


Date html generated: 2011_08_17-PM-04_59_55
Last ObjectModification: 2011_02_07-PM-08_36_31

Home Index