{ [x:SimpleType]. (st_const?(x)  ) }

{ Proof }



Definitions occuring in Statement :  st_const?: st_const?(x) simple_type: SimpleType bool: uall: [x:A]. B[x] member: t  T
Definitions :  btrue: tt bfalse: ff universe: Type atom: Atom lambda: x.A[x] so_lambda: x.t[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_lambda: x y.t[x; y] simple_type_ind: simple_type_ind eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] uall: [x:A]. B[x] isect: x:A. B[x] axiom: Ax simple_type: SimpleType st_const?: st_const?(x) bool: member: t  T equal: s = t
Lemmas :  member_wf simple_type_ind_wf bool_wf btrue_wf simple_type_wf bfalse_wf

\mforall{}[x:SimpleType].  (st\_const?(x)  \mmember{}  \mBbbB{})


Date html generated: 2011_08_17-PM-04_44_42
Last ObjectModification: 2011_02_06-PM-04_10_04

Home Index