{ st_exp{i:l}()  {i''} }

{ Proof }



Definitions occuring in Statement :  st_exp: st_exp{i:l}() member: t  T universe: Type
Definitions :  tag-by: zT ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) eclass: EClass(A[eo; e]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q uiff: uiff(P;Q) and: P  Q bag: bag(T) list: type List set: {x:A| B[x]}  top: Top true: True prop: subtype_rel: A r B uimplies: b supposing a isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] type-monotone: Monotone(T.F[T]) st_exp: st_exp{i:l}() rec: rec(x.A[x]) universe: Type simple_type: Error :simple_type,  atom: Atom st-constant: st-constant{i:l}(Info) all: x:A. B[x] function: x:A  B[x] equal: s = t member: t  T union: left + right product: x:A  B[x]
Lemmas :  Error :simple_type_wf,  st-constant_wf subtype_rel_wf subtype_rel_sum uall_wf type-monotone_wf subtype_rel_simple_product

st\_exp\{i:l\}()  \mmember{}  \mBbbU{}\{i''\}


Date html generated: 2011_08_17-PM-05_01_31
Last ObjectModification: 2011_02_04-AM-11_54_40

Home Index