{ [fun,arg:st_exp{i:l}()].  (ste_ap(fun;arg)  st_exp{i:l}()) }

{ Proof }



Definitions occuring in Statement :  ste_ap: ste_ap(fun;arg) st_exp: st_exp{i:l}() uall: [x:A]. B[x] member: t  T
Definitions :  tag-by: zT ldag: LabeledDAG(T) labeled-graph: LabeledGraph(T) record+: record+ record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q bag: bag(T) list: type List set: {x:A| B[x]}  top: Top true: True prop: so_lambda: x.t[x] type-monotone: Monotone(T.F[T]) universe: Type eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B decision: Decision function: x:A  B[x] all: x:A. B[x] axiom: Ax st_exp: st_exp{i:l}() ste_ap: ste_ap(fun;arg) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T equal: s = t rec: rec(x.A[x]) st-constant: st-constant{i:l}(Info) union: left + right atom: Atom product: x:A  B[x] simple_type: Error :simple_type,  pair: <a, b> inr: inr x  inl: inl x 
Lemmas :  Error :simple_type_wf,  st-constant_wf subtype_rel_wf uall_wf type-monotone_wf member_wf subtype_rel_sum subtype_rel_simple_product

\mforall{}[fun,arg:st\_exp\{i:l\}()].    (ste\_ap(fun;arg)  \mmember{}  st\_exp\{i:l\}())


Date html generated: 2011_08_17-PM-05_02_35
Last ObjectModification: 2011_02_04-AM-11_55_49

Home Index