{ t:. A:Id List.
    ( {a:Id| (a  A)}  ~ (2 * t) + 1
     (W:{a:Id| (a  A)}  List List
          ((ws:{a:Id| (a  A)}  List
              ((ws  W)  (||ws|| = (t + 1))  no_repeats({a:Id| (a  A)} ;ws)\000C
))
           two-intersection(A;W)))) }

{ Proof }



Definitions occuring in Statement :  two-intersection: two-intersection(A;W) Id: Id length: ||as|| int_seg: {i..j} nat: all: x:A. B[x] iff: P  Q implies: P  Q and: P  Q set: {x:A| B[x]}  list: type List multiply: n * m add: n + m natural_number: $n int: equal: s = t no_repeats: no_repeats(T;l) l_member: (x  l) equipollent:  A ~ B
Definitions :  list: type List equipollent:  A ~ B function: x:A  B[x] all: x:A. B[x] member: t  T nat: equal: s = t le: A  B universe: Type prop: int: less_than: a < b void: Void implies: P  Q false: False not: A p-outcome: Outcome subtype_rel: A r B strong-subtype: strong-subtype(A;B) product: x:A  B[x] exists: x:A. B[x] rev_implies: P  Q no_repeats: no_repeats(T;l) iff: P  Q guard: {T} rationals: subtype: S  T real: add: n + m n-intersecting: n-intersecting(A;T;n) grp_car: Error :grp_car,  multiply: n * m int_seg: {i..j} length: ||as|| and: P  Q two-intersection: two-intersection(A;W) Id: Id l_member: (x  l) set: {x:A| B[x]}  natural_number: $n l_all: (xL.P[x]) so_lambda: x.t[x] subtract: n - m combination: Combination(n;T) Auto: Error :Auto,  RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  tactic: Error :tactic,  fpf: a:A fp-B[a] CollapseTHENA: Error :CollapseTHENA,  biject: Bij(A;B;f) bool: cand: A c B isect: x:A. B[x] top: Top ge: i  j  label: ...$L... t pair: <a, b> tl: tl(l) hd: hd(l) MaAuto: Error :MaAuto,  nil: [] cons: [car / cdr] THENM: Error :THENM,  lambda: x.A[x] RepeatFor: Error :RepeatFor,  ParallelOp: Error :ParallelOp
Lemmas :  l_all_cons nat_properties length_nil length_cons non_neg_length length_wf_nat top_wf combination_wf subtype_rel_wf l_all_wf two-intersection_wf iff_wf length_wf1 no_repeats_wf equipollent_wf l_member_wf int_seg_wf Id_wf combinations-n-intersecting nat_wf member_wf le_wf

\mforall{}t:\mBbbN{}.  \mforall{}A:Id  List.
    (  \{a:Id|  (a  \mmember{}  A)\}    \msim{}  \mBbbN{}(2  *  t)  +  1
    {}\mRightarrow{}  (\mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List
                ((\mforall{}ws:\{a:Id|  (a  \mmember{}  A)\}    List.  ((ws  \mmember{}  W)  \mLeftarrow{}{}\mRightarrow{}  (||ws||  =  (t  +  1))  \mwedge{}  no\_repeats(\{a:Id|  (a  \mmember{}  A)\}  ;\000C
ws)))
                {}\mRightarrow{}  two-intersection(A;W))))


Date html generated: 2010_08_27-AM-12_50_26
Last ObjectModification: 2009_12_23-PM-03_26_44

Home Index