Nuprl Lemma : RankEx2-defop-extract

[T,S,P:Type]. ∀[R:P ─→ RankEx2(S;T) ─→ ℙ].
  ((∀t:T. (∃x:{P| (R RankEx2_LeafT(t))}))
   (∀s:S. (∃x:{P| (R RankEx2_LeafS(s))}))
   (∀d:RankEx2(S;T). ∀s:S. ∀t:T.  ((∃x:{P| (R d)})  (∃x:{P| (R RankEx2_Prod(<<d, s>t>))})))
   (∀z:S × RankEx2(S;T) RankEx2(S;T)
        (case of inl(p) => ∃x:{P| (R (snd(p)))} inr(d) => ∃x:{P| (R d)}  (∃x:{P| (R RankEx2_Union(z))})))
   (∀L:(S × RankEx2(S;T)) List. ((∀p∈L.∃x:{P| (R (snd(p)))})  (∃x:{P| (R RankEx2_ListProd(L))})))
   (∀z:T (RankEx2(S;T) List)
        (case of inl(p) => True inr(L) => (∀p∈L.∃x:{P| (R p)})  (∃x:{P| (R RankEx2_UnionList(z))})))
   {∀t:RankEx2(S;T). (∃x:{P| (R t)})})


Proof




Definitions occuring in Statement :  RankEx2_UnionList: RankEx2_UnionList(unionlist) RankEx2_ListProd: RankEx2_ListProd(listprod) RankEx2_Union: RankEx2_Union(union) RankEx2_Prod: RankEx2_Prod(prod) RankEx2_LeafS: RankEx2_LeafS(leafs) RankEx2_LeafT: RankEx2_LeafT(leaft) RankEx2: RankEx2(S;T) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} pi2: snd(t) all: x:A. B[x] sq_exists: x:{A| B[x]} implies:  Q true: True apply: a function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right universe: Type
Lemmas :  top_wf has-value_wf_base lifting-strict-atom_eq base_wf base_sq lifting-strict-spread pair-eta
\mforall{}[T,S,P:Type].  \mforall{}[R:P  {}\mrightarrow{}  RankEx2(S;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}t:T.  (\mexists{}x:\{P|  (R  x  RankEx2\_LeafT(t))\}))
    {}\mRightarrow{}  (\mforall{}s:S.  (\mexists{}x:\{P|  (R  x  RankEx2\_LeafS(s))\}))
    {}\mRightarrow{}  (\mforall{}d:RankEx2(S;T).  \mforall{}s:S.  \mforall{}t:T.    ((\mexists{}x:\{P|  (R  x  d)\})  {}\mRightarrow{}  (\mexists{}x:\{P|  (R  x  RankEx2\_Prod(<<d,  s>,  t>))\}))\000C)
    {}\mRightarrow{}  (\mforall{}z:S  \mtimes{}  RankEx2(S;T)  +  RankEx2(S;T)
                (case  z  of  inl(p)  =>  \mexists{}x:\{P|  (R  x  (snd(p)))\}  |  inr(d)  =>  \mexists{}x:\{P|  (R  x  d)\}
                {}\mRightarrow{}  (\mexists{}x:\{P|  (R  x  RankEx2\_Union(z))\})))
    {}\mRightarrow{}  (\mforall{}L:(S  \mtimes{}  RankEx2(S;T))  List
                ((\mforall{}p\mmember{}L.\mexists{}x:\{P|  (R  x  (snd(p)))\})  {}\mRightarrow{}  (\mexists{}x:\{P|  (R  x  RankEx2\_ListProd(L))\})))
    {}\mRightarrow{}  (\mforall{}z:T  +  (RankEx2(S;T)  List)
                (case  z  of  inl(p)  =>  True  |  inr(L)  =>  (\mforall{}p\mmember{}L.\mexists{}x:\{P|  (R  x  p)\})
                {}\mRightarrow{}  (\mexists{}x:\{P|  (R  x  RankEx2\_UnionList(z))\})))
    {}\mRightarrow{}  \{\mforall{}t:RankEx2(S;T).  (\mexists{}x:\{P|  (R  x  t)\})\})



Date html generated: 2015_07_17-AM-07_50_35
Last ObjectModification: 2015_04_23-PM-11_32_00

Home Index