Step
*
of Lemma
RankEx2_ind-unroll
∀[S,T,A:Type]. ∀[R:A ─→ RankEx2(S;T) ─→ ℙ]. ∀[LeafT,LeafS,Prod,Union,ListProd,UnionList:Top]. ∀[t:RankEx2(S;T)].
(RankEx2_ind(t;
RankEx2_LeafT(leaft)
⇒ LeafT[leaft];
RankEx2_LeafS(leafs)
⇒ LeafS[leafs];
RankEx2_Prod(prod)
⇒ rec1.Prod[prod;rec1];
RankEx2_Union(union)
⇒ rec2.Union[union;rec2];
RankEx2_ListProd(listprod)
⇒ rec3.ListProd[listprod;rec3];
RankEx2_UnionList(unionlist)
⇒ rec4.UnionList[unionlist;rec4])
~ let F = λt.RankEx2_ind(t;
RankEx2_LeafT(leaft)
⇒ LeafT[leaft];
RankEx2_LeafS(leafs)
⇒ LeafS[leafs];
RankEx2_Prod(prod)
⇒ rec1.Prod[prod;rec1];
RankEx2_Union(union)
⇒ rec2.Union[union;rec2];
RankEx2_ListProd(listprod)
⇒ rec3.ListProd[listprod;rec3];
RankEx2_UnionList(unionlist)
⇒ rec4.UnionList[unionlist;rec4]) in
if RankEx2_LeafT?(t) then LeafT RankEx2_LeafT-leaft(t)
if RankEx2_LeafS?(t) then LeafS RankEx2_LeafS-leafs(t)
if RankEx2_Prod?(t) then Prod RankEx2_Prod-prod(t) (F (fst(fst(RankEx2_Prod-prod(t)))))
if RankEx2_Union?(t)
then Union RankEx2_Union-union(t)
case RankEx2_Union-union(t) of inl(x) => let x1,x2 = x in F x2 | inr(y) => F y
if RankEx2_ListProd?(t)
then ListProd RankEx2_ListProd-listprod(t) (λi.let u2,u3 = RankEx2_ListProd-listprod(t)[i] in F u3)
else UnionList RankEx2_UnionList-unionlist(t)
case RankEx2_UnionList-unionlist(t) of inl(x) => Ax | inr(y) => λi.(F y[i])
fi )
BY
{ ((UnivCD THENA Auto)
THEN RW (AddrC [1] RecUnfoldTopAbC) 0
THEN D -1
THEN RepUR ``let so_apply`` 0
THEN Try (Trivial)
THEN DProdsAndUnions
THEN Reduce 0
THEN Try (Trivial)) }
Latex:
\mforall{}[S,T,A:Type]. \mforall{}[R:A {}\mrightarrow{} RankEx2(S;T) {}\mrightarrow{} \mBbbP{}]. \mforall{}[LeafT,LeafS,Prod,Union,ListProd,UnionList:Top].
\mforall{}[t:RankEx2(S;T)].
(RankEx2\_ind(t;
RankEx2\_LeafT(leaft){}\mRightarrow{} LeafT[leaft];
RankEx2\_LeafS(leafs){}\mRightarrow{} LeafS[leafs];
RankEx2\_Prod(prod){}\mRightarrow{} rec1.Prod[prod;rec1];
RankEx2\_Union(union){}\mRightarrow{} rec2.Union[union;rec2];
RankEx2\_ListProd(listprod){}\mRightarrow{} rec3.ListProd[listprod;rec3];
RankEx2\_UnionList(unionlist){}\mRightarrow{} rec4.UnionList[unionlist;rec4])
\msim{} let F = \mlambda{}t.RankEx2\_ind(t;
RankEx2\_LeafT(leaft){}\mRightarrow{} LeafT[leaft];
RankEx2\_LeafS(leafs){}\mRightarrow{} LeafS[leafs];
RankEx2\_Prod(prod){}\mRightarrow{} rec1.Prod[prod;rec1];
RankEx2\_Union(union){}\mRightarrow{} rec2.Union[union;rec2];
RankEx2\_ListProd(listprod){}\mRightarrow{} rec3.ListProd[listprod;rec3];
RankEx2\_UnionList(unionlist){}\mRightarrow{} rec4.UnionList[unionlist;rec4]) in
if RankEx2\_LeafT?(t) then LeafT RankEx2\_LeafT-leaft(t)
if RankEx2\_LeafS?(t) then LeafS RankEx2\_LeafS-leafs(t)
if RankEx2\_Prod?(t) then Prod RankEx2\_Prod-prod(t) (F (fst(fst(RankEx2\_Prod-prod(t)))))
if RankEx2\_Union?(t)
then Union RankEx2\_Union-union(t)
case RankEx2\_Union-union(t) of inl(x) => let x1,x2 = x in F x2 | inr(y) => F y
if RankEx2\_ListProd?(t)
then ListProd RankEx2\_ListProd-listprod(t)
(\mlambda{}i.let u2,u3 = RankEx2\_ListProd-listprod(t)[i]
in F u3)
else UnionList RankEx2\_UnionList-unionlist(t)
case RankEx2\_UnionList-unionlist(t) of inl(x) => Ax | inr(y) => \mlambda{}i.(F y[i])
fi )
By
((UnivCD THENA Auto)
THEN RW (AddrC [1] RecUnfoldTopAbC) 0
THEN D -1
THEN RepUR ``let so\_apply`` 0
THEN Try (Trivial)
THEN DProdsAndUnions
THEN Reduce 0
THEN Try (Trivial))
Home
Index