Nuprl Lemma : bm_compare_antisym_le

[K:Type]. ∀[compare:bm_compare(K)]. ∀[k1,k2:K].  ((0 ≤ (compare k1 k2))  (0 ≤ (compare k2 k1))  (k1 k2 ∈ K))


Proof




Definitions occuring in Statement :  bm_compare: bm_compare(K) uall: [x:A]. B[x] le: A ≤ B implies:  Q apply: a natural_number: $n universe: Type equal: t ∈ T
Lemmas :  le_wf bm_compare_wf
\mforall{}[K:Type].  \mforall{}[compare:bm\_compare(K)].  \mforall{}[k1,k2:K].
    ((0  \mleq{}  (compare  k1  k2))  {}\mRightarrow{}  (0  \mleq{}  (compare  k2  k1))  {}\mRightarrow{}  (k1  =  k2))



Date html generated: 2015_07_17-AM-08_19_25
Last ObjectModification: 2015_01_27-PM-00_36_51

Home Index