Step
*
1
of Lemma
bm_compare_connex_le
1. K : Type
2. compare : K ─→ K ─→ ℤ@i
3. Trans(K;x,y.0 ≤ (compare x y))@i
4. AntiSym(K;x,y.0 ≤ (compare x y))@i
5. Connex(K;x,y.0 ≤ (compare x y))@i
6. Refl(K;x,y.(compare x y) = 0 ∈ ℤ)@i
7. Sym(K;x,y.(compare x y) = 0 ∈ ℤ)@i
8. k1 : K@i
9. k2 : K@i
10. ¬(0 ≤ (compare k1 k2))
⊢ 0 ≤ (compare k2 k1)
BY
{ Assert ⌈(0 ≤ (compare k2 k1)) ∨ (0 ≤ (compare k1 k2))⌉⋅ }
1
.....assertion.....
1. K : Type
2. compare : K ─→ K ─→ ℤ@i
3. Trans(K;x,y.0 ≤ (compare x y))@i
4. AntiSym(K;x,y.0 ≤ (compare x y))@i
5. Connex(K;x,y.0 ≤ (compare x y))@i
6. Refl(K;x,y.(compare x y) = 0 ∈ ℤ)@i
7. Sym(K;x,y.(compare x y) = 0 ∈ ℤ)@i
8. k1 : K@i
9. k2 : K@i
10. ¬(0 ≤ (compare k1 k2))
⊢ (0 ≤ (compare k2 k1)) ∨ (0 ≤ (compare k1 k2))
2
1. K : Type
2. compare : K ─→ K ─→ ℤ@i
3. Trans(K;x,y.0 ≤ (compare x y))@i
4. AntiSym(K;x,y.0 ≤ (compare x y))@i
5. Connex(K;x,y.0 ≤ (compare x y))@i
6. Refl(K;x,y.(compare x y) = 0 ∈ ℤ)@i
7. Sym(K;x,y.(compare x y) = 0 ∈ ℤ)@i
8. k1 : K@i
9. k2 : K@i
10. ¬(0 ≤ (compare k1 k2))
11. (0 ≤ (compare k2 k1)) ∨ (0 ≤ (compare k1 k2))
⊢ 0 ≤ (compare k2 k1)
Latex:
1. K : Type
2. compare : K {}\mrightarrow{} K {}\mrightarrow{} \mBbbZ{}@i
3. Trans(K;x,y.0 \mleq{} (compare x y))@i
4. AntiSym(K;x,y.0 \mleq{} (compare x y))@i
5. Connex(K;x,y.0 \mleq{} (compare x y))@i
6. Refl(K;x,y.(compare x y) = 0)@i
7. Sym(K;x,y.(compare x y) = 0)@i
8. k1 : K@i
9. k2 : K@i
10. \mneg{}(0 \mleq{} (compare k1 k2))
\mvdash{} 0 \mleq{} (compare k2 k1)
By
Assert \mkleeneopen{}(0 \mleq{} (compare k2 k1)) \mvee{} (0 \mleq{} (compare k1 k2))\mkleeneclose{}\mcdot{}
Home
Index