Step
*
of Lemma
int-decr-map-isEmpty-prop
∀[Value:Type]. ∀[m:int-decr-map-type(Value)]. (↑int-decr-map-isEmpty(m)
⇐⇒ ∀k:ℤ. (¬↑int-decr-map-inDom(k;m)))
BY
{ (Auto
THEN Try (((RWO "int-decr-map-isEmpty-assert" (-2) THENA Auto)
THEN (HypSubst' (-2) 0 THENA Auto)
THEN RW (SymbolicComputeC []) 0
THEN Auto))
THEN SupposeNot
THEN (Assert ⌈False⌉⋅ THEN Auto)
THEN RepUR ``int-decr-map-isEmpty`` (-1)
THEN AllPushDown
THEN (FLemma `member_exists` [-1] THENA Auto)
THEN ExRepD
THEN DProdsAndUnions
THEN (InstHyp [⌈x1⌉] (-5)⋅ THENA Auto)
THEN (RWO "int-decr-map-inDom-prop" (-1) THENA Auto)
THEN (FLemma `int-decr-map-find-prop2` [-1] THENA Auto)
THEN (RWO "l_all_iff" (-1) THENA Auto)
THEN InstHyp [⌈<x1, x2>⌉] (-1)⋅
THEN Auto) }
Latex:
\mforall{}[Value:Type]. \mforall{}[m:int-decr-map-type(Value)].
(\muparrow{}int-decr-map-isEmpty(m) \mLeftarrow{}{}\mRightarrow{} \mforall{}k:\mBbbZ{}. (\mneg{}\muparrow{}int-decr-map-inDom(k;m)))
By
(Auto
THEN Try (((RWO "int-decr-map-isEmpty-assert" (-2) THENA Auto)
THEN (HypSubst' (-2) 0 THENA Auto)
THEN RW (SymbolicComputeC []) 0
THEN Auto))
THEN SupposeNot
THEN (Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto)
THEN RepUR ``int-decr-map-isEmpty`` (-1)
THEN AllPushDown
THEN (FLemma `member\_exists` [-1] THENA Auto)
THEN ExRepD
THEN DProdsAndUnions
THEN (InstHyp [\mkleeneopen{}x1\mkleeneclose{}] (-5)\mcdot{} THENA Auto)
THEN (RWO "int-decr-map-inDom-prop" (-1) THENA Auto)
THEN (FLemma `int-decr-map-find-prop2` [-1] THENA Auto)
THEN (RWO "l\_all\_iff" (-1) THENA Auto)
THEN InstHyp [\mkleeneopen{}<x1, x2>\mkleeneclose{}] (-1)\mcdot{}
THEN Auto)
Home
Index