Step
*
of Lemma
TC-min
∀[Dom:Type]. ∀[R,Q:Dom ─→ Dom ─→ ℙ].
((∀x,y,z:Dom. ((Q x y)
⇒ (Q y z)
⇒ (Q x z)))
⇒ (∀x,y:Dom. ((R x y)
⇒ (Q x y)))
⇒ (∀x,y:Dom. (TC(λa,b.R a b)(x,y)
⇒ (Q x y))))
BY
{ (Auto
THEN Unfold `TC` -1
THEN (InstLemma `transitive-closure-minimal` [⌈Dom⌉;⌈λ2x y.R x y⌉;⌈λ2x y.Q x y⌉]⋅ THENA Auto)
THEN All (Unfold `so_lambda`)
THEN Try ((D 0 THEN Reduce 0 THEN Auto)⋅)) }
1
1. [Dom] : Type
2. [R] : Dom ─→ Dom ─→ ℙ
3. [Q] : Dom ─→ Dom ─→ ℙ
4. ∀x,y,z:Dom. ((Q x y)
⇒ (Q y z)
⇒ (Q x z))@i
5. ∀x,y:Dom. ((R x y)
⇒ (Q x y))@i
6. x : Dom@i
7. y : Dom@i
8. TC(λa,b. (R a b)) x y@i
9. TC(λx,y. (R x y)) => λx,y. (Q x y)
⊢ Q x y
Latex:
\mforall{}[Dom:Type]. \mforall{}[R,Q:Dom {}\mrightarrow{} Dom {}\mrightarrow{} \mBbbP{}].
((\mforall{}x,y,z:Dom. ((Q x y) {}\mRightarrow{} (Q y z) {}\mRightarrow{} (Q x z)))
{}\mRightarrow{} (\mforall{}x,y:Dom. ((R x y) {}\mRightarrow{} (Q x y)))
{}\mRightarrow{} (\mforall{}x,y:Dom. (TC(\mlambda{}a,b.R a b)(x,y) {}\mRightarrow{} (Q x y))))
By
(Auto
THEN Unfold `TC` -1
THEN (InstLemma `transitive-closure-minimal` [\mkleeneopen{}Dom\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x y.R x y\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}x y.Q x y\mkleeneclose{}]\mcdot{} THENA Auto)
THEN All (Unfold `so\_lambda`)
THEN Try ((D 0 THEN Reduce 0 THEN Auto)\mcdot{}))
Home
Index