Step
*
1
1
of Lemma
hdf-ap-invariant2
1. A : Type
2. B : Type
3. Q : bag(B) ─→ ℙ
4. Q[{}]@i
5. ∀b:bag(B). SqStable(Q[b])@i
6. a : A@i
7. x : A ─→ (hdataflow(A;B) × bag(B))@i
8. ∀m:A. let X',b = x m in Q[b]@i
⊢ Q[snd((x a))]
BY
{ (Auto THEN With ⌈a⌉ (D (-1))⋅ THEN Auto) }
1
1. A : Type
2. B : Type
3. Q : bag(B) ─→ ℙ
4. Q[{}]@i
5. ∀b:bag(B). SqStable(Q[b])@i
6. a : A@i
7. x : A ─→ (hdataflow(A;B) × bag(B))@i
8. let X',b = x a
in Q[b]@i
⊢ Q[snd((x a))]
Latex:
1. A : Type
2. B : Type
3. Q : bag(B) {}\mrightarrow{} \mBbbP{}
4. Q[\{\}]@i
5. \mforall{}b:bag(B). SqStable(Q[b])@i
6. a : A@i
7. x : A {}\mrightarrow{} (hdataflow(A;B) \mtimes{} bag(B))@i
8. \mforall{}m:A. let X',b = x m in Q[b]@i
\mvdash{} Q[snd((x a))]
By
(Auto THEN With \mkleeneopen{}a\mkleeneclose{} (D (-1))\mcdot{} THEN Auto)
Home
Index