Step * of Lemma hdf-compose2-transformation1-2-1

[L1,L2,G1,G2,init,S:Base]. ∀[m1,m2:ℕ+].
  (fix((λmk-hdf.(inl a.cbva_seq(L1[a]; λg.<mk-hdf, G1[g]>m1)))))
   (fix((λmk-hdf,s. (inl a.cbva_seq(L2[a]; λg.<mk-hdf S[g;s], G2[g]>m2))))) init) 
  fix((λmk-hdf,s. (inl a.cbva_seq(λn.if n <m1 then L1[a] n
                                         if n <m1 m2 then mk_lambdas(L2[a] (n m1);m1)
                                         else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.∪f∈G1[g1].∪b∈G2[g2].f b;m2);m1)
                                         fi ; λg.<mk-hdf S[partial_ap_gen(g;(m1 m2) 1;m1;m2);s]
                                                 select_fun_last(g;m1 m2)
                                                 >(m1 m2) 1))))) 
    init)
BY
(Auto
   THEN RepUR ``hdf-compose2 mk-hdf ifthenelse hdf-halted hdf-halt hdf-run hdf-ap lt_int bor isr bfalse btrue`` 0
   THEN LiftAll 0
   THEN Reduce 0
   THEN SqequalInduction
   THEN (UnivCD THENA Auto)
   THEN ...
   THEN RepeatFor ((RWO "cbva_seq-spread" THENA Auto))
   THEN Reduce 0
   THEN (RWO "cbva_seq_extend" THENA Auto)
   THEN (RWO "cbva_seq-combine" THENA Auto)
   THEN Reduce 0
   THEN RepUR ``ifthenelse lt_int btrue eq_int`` 0
   THEN LiftAll 0
   THEN Reduce 0
   THEN Repeat ((SqequalInductionAuxAux false THEN Try (Complete (Auto))))
   THEN (Subst ⌈m1 m2 (m1 m2) 1⌉ 0⋅ THENA Auto)
   THEN (RWO "cbva_seq-list-case2" THENA Auto)
   THEN BLemma `cbva_seq-sqequal-n`
   THEN Try (Complete (Auto'))
   THEN RepeatFor ((SqequalNCanonicalCD THENA Auto'))
   THEN Try (Complete (Auto))
   THEN Try (Complete ((RWO "select_fun_ap_is_last1" THEN Auto)))
   THEN Subst ⌈partial_ap(partial_ap_gen(g;(m1 m2) 1;m1;m2 1);m2 1;m2) partial_ap_gen(g;(m1 m2) 1;m1;m2)⌉
    0⋅
   THEN Try (Complete ((BLemma `partial_ap_of_partial_ap_gen1` THEN Auto)))
   THEN Try (Complete ((BackThruSomeHyp THEN Auto)))) }


Latex:


\mforall{}[L1,L2,G1,G2,init,S:Base].  \mforall{}[m1,m2:\mBbbN{}\msupplus{}].
    (fix((\mlambda{}mk-hdf.(inl  (\mlambda{}a.cbva\_seq(L1[a];  \mlambda{}g.<mk-hdf,  G1[g]>  m1)))))
      o  (fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(L2[a];  \mlambda{}g.<mk-hdf  S[g;s],  G2[g]>  m2)))))  init) 
    \msim{}  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(\mlambda{}n.if  n  <z  m1  then  L1[a]  n
                                                                                  if  n  <z  m1  +  m2  then  mk\_lambdas(L2[a]  (n  -  m1);m1)
                                                                                  else  mk\_lambdas\_fun(\mlambda{}g1.mk\_lambdas\_fun(\mlambda{}g2.\mcup{}f\mmember{}G1[g1].
                                                                                                                                                                        \mcup{}b\mmember{}G2[g2].
                                                                                                                                                                        f  b;m2);m1)
                                                                                  fi  ;  \mlambda{}g.<mk-hdf  S[partial\_ap\_gen(g;(m1  +  m2)  +  1;m1;m2);s]
                                                                                                  ,  select\_fun\_last(g;m1  +  m2)
                                                                                                  >  (m1  +  m2)  +  1))))) 
        init)


By

(Auto
  THEN  ...
  THEN  LiftAll  0
  THEN  Reduce  0
  THEN  SqequalInduction
  THEN  (UnivCD  THENA  Auto)
  THEN  ...
  THEN  RepeatFor  2  ((RWO  "cbva\_seq-spread"  0  THENA  Auto))
  THEN  Reduce  0
  THEN  (RWO  "cbva\_seq\_extend"  0  THENA  Auto)
  THEN  (RWO  "cbva\_seq-combine"  0  THENA  Auto)
  THEN  Reduce  0
  THEN  RepUR  ``ifthenelse  lt\_int  btrue  eq\_int``  0
  THEN  LiftAll  0
  THEN  Reduce  0
  THEN  Repeat  ((SqequalInductionAuxAux  false  THEN  Try  (Complete  (Auto))))
  THEN  (Subst  \mkleeneopen{}m1  +  m2  +  1  \msim{}  (m1  +  m2)  +  1\mkleeneclose{}  0\mcdot{}  THENA  Auto)
  THEN  (RWO  "cbva\_seq-list-case2"  0  THENA  Auto)
  THEN  BLemma  `cbva\_seq-sqequal-n`
  THEN  Try  (Complete  (Auto'))
  THEN  RepeatFor  2  ((SqequalNCanonicalCD  THENA  Auto'))
  THEN  Try  (Complete  (Auto))
  THEN  Try  (Complete  ((RWO  "select\_fun\_ap\_is\_last1"  0  THEN  Auto)))
  THEN  Subst  \mkleeneopen{}partial\_ap(partial\_ap\_gen(g;(m1  +  m2)  +  1;m1;m2  +  1);m2  +  1;m2)  \msim{}  partial\_ap\_gen(g;(m1
                          +  m2)
                          +  1;m1;m2)\mkleeneclose{}  0\mcdot{}
  THEN  Try  (Complete  ((BLemma  `partial\_ap\_of\_partial\_ap\_gen1`  THEN  Auto)))
  THEN  Try  (Complete  ((BackThruSomeHyp  THEN  Auto))))




Home Index