Step
*
of Lemma
hdf-parallel-transformation1-2-1
∀[L1,L2,G1,G2,S1,S2,init1,init2:Base]. ∀[m1,m2:ℕ].
(fix((λmk-hdf,s. (inl (λa.cbva_seq(L1[s;a]; λg.<mk-hdf S1[g;s], G1[g]>; m1))))) init1
|| fix((λmk-hdf,s. (inl (λa.cbva_seq(L2[s;a]; λg.<mk-hdf S2[g;s], G2[g]>; m2))))) init2
~ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if n <z m1 then L1[fst(s);a] n
if n <z m1 + m2 then mk_lambdas(L2[snd(s);a] (n - m1);m1)
else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.(G1[g1] + G2[g2]);m2);m1)
fi ; λg.<mk-hdf
<S1[partial_ap_gen(g;(m1 + m2) + 1;0;m1);fst(s)]
, S2[partial_ap_gen(g;(m1 + m2) + 1;m1;m2);snd(s)]
>
, select_fun_last(g;m1 + m2)
>; (m1 + m2) + 1)))))
<init1, init2>)
BY
{ (Auto
THEN ...
THEN LiftAll 0
THEN Reduce 0
THEN SqequalInduction
THEN (UnivCD THENA Auto)
THEN ...
THEN RepeatFor 2 ((RWO "cbva_seq-spread" 0 THENA Auto))
THEN (RWO "cbva_seq_extend" 0 THENA Auto)
THEN (RWO "cbva_seq-combine2" 0 THENA Auto)
THEN Reduce 0
THEN RepUR ``ifthenelse lt_int btrue eq_int`` 0
THEN LiftAll 0
THEN Reduce 0
THEN Repeat ((SqequalInductionAuxAux false THEN Try (Complete (Auto))))
THEN (Subst ⌈m1 + m2 + 1 ~ (m1 + m2) + 1⌉ 0⋅ THENA Auto)
THEN (RWO "cbva_seq-list-case2" 0 THENA Auto)
THEN BLemma `cbva_seq-sqequal-n`
THEN Try (Complete (Auto'))
THEN Fold `select_fun_last` 0
THEN RepeatFor 2 ((SqequalNCanonicalCD THENA Auto'))
THEN Try (Complete (Auto))
THEN Try (Complete ((RWO "select_fun_last_partial_ap_gen1" 0 THEN Auto)))
THEN (Subst ⌈partial_ap(partial_ap_gen(g;(m1 + m2) + 1;m1;m2 + 1);m2 + 1;m2) ~ partial_ap_gen(g;(m1 + m2) + 1;m1;m2)⌉
0⋅
THENA (BLemma `partial_ap_of_partial_ap_gen1` THEN Auto)
)
THEN (Subst ⌈partial_ap(g;(m1 + m2) + 1;m1) ~ partial_ap_gen(g;(m1 + m2) + 1;0;m1)⌉ 0⋅
THENA (BLemma `partial_ap_is_gen` THEN Auto')
)
THEN All (RepUR ``pi1 pi2``)
THEN BackThruSomeHyp
THEN Auto) }
Latex:
\mforall{}[L1,L2,G1,G2,S1,S2,init1,init2:Base]. \mforall{}[m1,m2:\mBbbN{}].
(fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(L1[s;a]; \mlambda{}g.<mk-hdf S1[g;s], G1[g]> m1))))) init1
|| fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(L2[s;a]; \mlambda{}g.<mk-hdf S2[g;s], G2[g]> m2))))) init2
\msim{} fix((\mlambda{}mk-hdf,s.
(inl (\mlambda{}a.cbva\_seq(\mlambda{}n.if n <z m1 then L1[fst(s);a] n
if n <z m1 + m2 then mk\_lambdas(L2[snd(s);a] (n - m1);m1)
else mk\_lambdas\_fun(\mlambda{}g1.mk\_lambdas\_fun(\mlambda{}g2.(G1[g1]
+ G2[g2]);m2);m1)
fi ; \mlambda{}g.<mk-hdf
<S1[partial\_ap\_gen(g;(m1 + m2) + 1;0;m1);fst(s)]
, S2[partial\_ap\_gen(g;(m1 + m2) + 1;m1;m2);snd(s)]
>
, select\_fun\_last(g;m1 + m2)
> (m1 + m2) + 1)))))
<init1, init2>)
By
(Auto
THEN ...
THEN LiftAll 0
THEN Reduce 0
THEN SqequalInduction
THEN (UnivCD THENA Auto)
THEN ...
THEN RepeatFor 2 ((RWO "cbva\_seq-spread" 0 THENA Auto))
THEN (RWO "cbva\_seq\_extend" 0 THENA Auto)
THEN (RWO "cbva\_seq-combine2" 0 THENA Auto)
THEN Reduce 0
THEN RepUR ``ifthenelse lt\_int btrue eq\_int`` 0
THEN LiftAll 0
THEN Reduce 0
THEN Repeat ((SqequalInductionAuxAux false THEN Try (Complete (Auto))))
THEN (Subst \mkleeneopen{}m1 + m2 + 1 \msim{} (m1 + m2) + 1\mkleeneclose{} 0\mcdot{} THENA Auto)
THEN (RWO "cbva\_seq-list-case2" 0 THENA Auto)
THEN BLemma `cbva\_seq-sqequal-n`
THEN Try (Complete (Auto'))
THEN Fold `select\_fun\_last` 0
THEN RepeatFor 2 ((SqequalNCanonicalCD THENA Auto'))
THEN Try (Complete (Auto))
THEN Try (Complete ((RWO "select\_fun\_last\_partial\_ap\_gen1" 0 THEN Auto)))
THEN (Subst \mkleeneopen{}partial\_ap(partial\_ap\_gen(g;(m1 + m2) + 1;m1;m2 + 1);m2 + 1;m2) \msim{} partial\_ap\_gen(g;(m1
+ m2)
+ 1;m1;m2)\mkleeneclose{} 0\mcdot{}
THENA (BLemma `partial\_ap\_of\_partial\_ap\_gen1` THEN Auto)
)
THEN (Subst \mkleeneopen{}partial\_ap(g;(m1 + m2) + 1;m1) \msim{} partial\_ap\_gen(g;(m1 + m2) + 1;0;m1)\mkleeneclose{} 0\mcdot{}
THENA (BLemma `partial\_ap\_is\_gen` THEN Auto')
)
THEN All (RepUR ``pi1 pi2``)
THEN BackThruSomeHyp
THEN Auto)
Home
Index