Nuprl Lemma : min_w_unit_l_tree_wf
∀[T:Type]. ∀[u1,u2:T?]. ∀[f:T ─→ ℤ].  (min_w_unit_l_tree(u1;u2;f) ∈ T?)
Proof
Definitions occuring in Statement : 
min_w_unit_l_tree: min_w_unit_l_tree(u1;u2;f)
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
Lemmas : 
min_w_ord_wf, 
unit_wf2
\mforall{}[T:Type].  \mforall{}[u1,u2:T?].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (min\_w\_unit\_l\_tree(u1;u2;f)  \mmember{}  T?)
Date html generated:
2015_07_17-AM-07_41_49
Last ObjectModification:
2015_01_27-AM-09_30_54
Home
Index