Nuprl Lemma : min_w_ord_wf
∀[T:Type]. ∀[t1,t2:T]. ∀[f:T ─→ ℤ].  (min_w_ord(t1;t2;f) ∈ T)
Proof
Definitions occuring in Statement : 
min_w_ord: min_w_ord(t1;t2;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
int: ℤ
, 
universe: Type
Lemmas : 
lt_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_int_wf, 
le_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
\mforall{}[T:Type].  \mforall{}[t1,t2:T].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].    (min\_w\_ord(t1;t2;f)  \mmember{}  T)
Date html generated:
2015_07_17-AM-07_41_48
Last ObjectModification:
2015_01_27-AM-09_30_55
Home
Index