Step
*
2
of Lemma
mFOL-bound-rename
1. knd : Atom@i'
2. left : mFOL()@i'
3. right : mFOL()@i'
4. ∀L:ℤ List
(∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(left) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))})@i'
5. ∀L:ℤ List
(∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(right) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))})@i'
6. L : ℤ List@i'
⊢ ∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(mFOconnect(knd;left;right)) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))}
BY
{ (RepeatFor 2 ((InstHyp [⌈L⌉] (-3)⋅ THENA Auto)) THEN ExRepD THEN With ⌈mFOconnect(knd;f1;fmla')⌉ (D 0)⋅ THEN Auto) }
1
1. knd : Atom@i'
2. left : mFOL()@i'
3. right : mFOL()@i'
4. ∀L:ℤ List
(∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(left) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))})@i'
5. ∀L:ℤ List
(∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(right) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))})@i'
6. L : ℤ List@i'
7. f1 : mFOL()
8. mFOL-abstract(f1) = mFOL-abstract(left) ∈ AbstractFOFormula
9. l_disjoint(ℤ;L;mFOL-boundvars(f1))
10. fmla' : mFOL()
11. mFOL-abstract(fmla') = mFOL-abstract(right) ∈ AbstractFOFormula
12. l_disjoint(ℤ;L;mFOL-boundvars(fmla'))
⊢ mFOL-abstract(mFOconnect(knd;f1;fmla')) = mFOL-abstract(mFOconnect(knd;left;right)) ∈ AbstractFOFormula
2
1. knd : Atom@i'
2. left : mFOL()@i'
3. right : mFOL()@i'
4. ∀L:ℤ List
(∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(left) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))})@i'
5. ∀L:ℤ List
(∃fmla':{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(right) ∈ AbstractFOFormula)
∧ l_disjoint(ℤ;L;mFOL-boundvars(fmla')))})@i'
6. L : ℤ List@i'
7. f1 : mFOL()
8. mFOL-abstract(f1) = mFOL-abstract(left) ∈ AbstractFOFormula
9. l_disjoint(ℤ;L;mFOL-boundvars(f1))
10. fmla' : mFOL()
11. mFOL-abstract(fmla') = mFOL-abstract(right) ∈ AbstractFOFormula
12. l_disjoint(ℤ;L;mFOL-boundvars(fmla'))
13. mFOL-abstract(mFOconnect(knd;f1;fmla')) = mFOL-abstract(mFOconnect(knd;left;right)) ∈ AbstractFOFormula
⊢ l_disjoint(ℤ;L;mFOL-boundvars(mFOconnect(knd;f1;fmla')))
Latex:
1. knd : Atom@i'
2. left : mFOL()@i'
3. right : mFOL()@i'
4. \mforall{}L:\mBbbZ{} List
(\mexists{}fmla':\{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(left))
\mwedge{} l\_disjoint(\mBbbZ{};L;mFOL-boundvars(fmla')))\})@i'
5. \mforall{}L:\mBbbZ{} List
(\mexists{}fmla':\{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(right))
\mwedge{} l\_disjoint(\mBbbZ{};L;mFOL-boundvars(fmla')))\})@i'
6. L : \mBbbZ{} List@i'
\mvdash{} \mexists{}fmla':\{mFOL()| ((mFOL-abstract(fmla') = mFOL-abstract(mFOconnect(knd;left;right)))
\mwedge{} l\_disjoint(\mBbbZ{};L;mFOL-boundvars(fmla')))\}
By
(RepeatFor 2 ((InstHyp [\mkleeneopen{}L\mkleeneclose{}] (-3)\mcdot{} THENA Auto))
THEN ExRepD
THEN With \mkleeneopen{}mFOconnect(knd;f1;fmla')\mkleeneclose{} (D 0)\mcdot{}
THEN Auto)
Home
Index