Nuprl Definition : nullset

nullset(p;S) ==  ∀q:{q:ℚ0 < q} . ∃C:p-open(p). ((∀s:ℕ ─→ Outcome. ((S s)  s ∈ C)) ∧ measure(C) ≤ q)



Definitions occuring in Statement :  p-measure-le: measure(C) ≤ q p-open-member: s ∈ C p-open: p-open(p) p-outcome: Outcome nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] natural_number: $n rationals:
Definitions :  set: {x:A| B[x]}  rationals: qless: Error :qless,  natural_number: $n exists: x:A. B[x] p-open: p-open(p) and: P ∧ Q all: x:A. B[x] function: x:A ─→ B[x] nat: p-outcome: Outcome implies:  Q apply: a p-open-member: s ∈ C p-measure-le: measure(C) ≤ q
FDL editor aliases :  nullset
nullset(p;S)  ==
    \mforall{}q:\{q:\mBbbQ{}|  0  <  q\}  .  \mexists{}C:p-open(p).  ((\mforall{}s:\mBbbN{}  {}\mrightarrow{}  Outcome.  ((S  s)  {}\mRightarrow{}  s  \mmember{}  C))  \mwedge{}  measure(C)  \mleq{}  q)



Date html generated: 2015_07_17-AM-08_00_50
Last ObjectModification: 2008_02_27-PM-05_49_43

Home Index