Step
*
1
1
of Lemma
uniform-fps_wf
1. n : ℕ+
⊢ Σ0 ≤ i < n. map(λx.(1/n);upto(n))[i] = 1 ∈ ℚ
BY
{ Assert ⌈Σ0 ≤ i < n. (1/n) = 1 ∈ ℚ⌉⋅ }
1
.....assertion.....
1. n : ℕ+
⊢ Σ0 ≤ i < n. (1/n) = 1 ∈ ℚ
2
1. n : ℕ+
2. Σ0 ≤ i < n. (1/n) = 1 ∈ ℚ
⊢ Σ0 ≤ i < n. map(λx.(1/n);upto(n))[i] = 1 ∈ ℚ
Latex:
1. n : \mBbbN{}\msupplus{}
\mvdash{} \mSigma{}0 \mleq{} i < n. map(\mlambda{}x.(1/n);upto(n))[i] = 1
By
Assert \mkleeneopen{}\mSigma{}0 \mleq{} i < n. (1/n) = 1\mkleeneclose{}\mcdot{}
Home
Index