Nuprl Lemma : left_indices_minus_lemma
∀G:Top. (left-indices(-(G)) ~ right-indices(G))
Proof
Definitions occuring in Statement : 
Game-minus: -(G), 
right-indices: right-indices(g), 
left-indices: left-indices(g), 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
left-indices: left-indices(g), 
pi1: fst(t), 
Game-minus: -(G), 
mkGame: {mkGame(f[a] with a:L | g[b] with b:R}, 
Wsup: Wsup(a;b), 
right-indices: right-indices(g), 
pi2: snd(t)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}G:Top.  (left-indices(-(G))  \msim{}  right-indices(G))
Date html generated:
2019_10_31-AM-06_35_01
Last ObjectModification:
2019_09_12-PM-01_35_54
Theory : Numbers!and!Games
Home
Index