Nuprl Lemma : right_indices_minus_lemma
∀G:Top. (right-indices(-(G)) ~ left-indices(G))
Proof
Definitions occuring in Statement : 
Game-minus: -(G), 
right-indices: right-indices(g), 
left-indices: left-indices(g), 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
right-indices: right-indices(g), 
pi2: snd(t), 
pi1: fst(t), 
Game-minus: -(G), 
mkGame: {mkGame(f[a] with a:L | g[b] with b:R}, 
Wsup: Wsup(a;b), 
left-indices: left-indices(g)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid
Latex:
\mforall{}G:Top.  (right-indices(-(G))  \msim{}  left-indices(G))
Date html generated:
2019_10_31-AM-06_35_03
Last ObjectModification:
2019_09_12-PM-01_36_58
Theory : Numbers!and!Games
Home
Index