Nuprl Definition : sg-subgroup
sg-subgroup(sg;x.P[x]) ==  P[1] ∧ (∀x:Point. (P[x] 
⇒ P[x^-1])) ∧ (∀x,y:Point.  (P[x] 
⇒ P[y] 
⇒ P[(x y)]))
Definitions occuring in Statement : 
sg-op: (x y)
, 
sg-inv: x^-1
, 
sg-id: 1
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions occuring in definition : 
sg-id: 1
, 
and: P ∧ Q
, 
sg-inv: x^-1
, 
all: ∀x:A. B[x]
, 
ss-point: Point
, 
implies: P 
⇒ Q
, 
sg-op: (x y)
FDL editor aliases : 
sg-subgroup
Latex:
sg-subgroup(sg;x.P[x])  ==
    P[1]  \mwedge{}  (\mforall{}x:Point.  (P[x]  {}\mRightarrow{}  P[x\^{}-1]))  \mwedge{}  (\mforall{}x,y:Point.    (P[x]  {}\mRightarrow{}  P[y]  {}\mRightarrow{}  P[(x  y)]))
Date html generated:
2017_10_02-PM-03_25_10
Last ObjectModification:
2017_06_22-PM-04_41_52
Theory : constructive!algebra
Home
Index